Interatrial Shunts I: Corvia

Ted Feldman, M.D., MSCAI FACC FESC

Evanston Hospital

30th Annual Scientific Symposium Transcatheter Cardiovascular Therapeutics September 21st -25th, 2018 San Diego, CA

Ted Feldman MD, MSCAI FACC FESC

Disclosure Information

The following relationships exist:

Grant support: Abbott, BSC, Corvia, Edwards, WL Gore Consultant: Abbott, BSC, Edwards, WL Gore Stock Options: Mitralign, Cardiac Dimensions

Off label use of products and investigational devices will be discussed in this presentation

Pulmonary capillary wedge pressure at rest and during exercise and long-term mortality in patients with dyspnea & suspected HFpEF

NorthShore University HealthSystem Evanston Hospital European Heart Journal (2014) 35, 3103–3112

Intracardiac Pressures Measured Using an Implantable Hemodynamic Monitor Mortality and modest 6 month ePAD changes

InterAtrial Shunt Device (IASD[®]) for HFpEF

IASD proposed mode of action: decompresses overloaded LA chamber by shunting blood from LA \rightarrow RA + systemic veins, particularly during exercise

Corvia Medical IASD[®] Clinical Studies

- Pilot study (N=11): non-randomized, single-arm
 - Completed (Søndergaard L, et al. Eur J Heart Fail 2014)
- REDUCE LAP-HF (CE Mark) Study (N=64): non-randomized, single-arm
 - Completed (Hasenfuß Lancet 2016; Kaye Circ. HF 2016)
- REDUCE LAP-HF I (N=44): RCT mechanistic study
 - FDA IDE 30 Day Complete (Feldman T... Shah SJ. Circulation. 2018;137:364–375)
 - 1Y follow-up complete
- REDUCE LAP-HF II (N=608): RCT pivotal study
 - FDA approved IDE; recruiting
- HFrEF Feasibility study
 - FDA approved IDE; recruiting
- REDUCE LAP-HF III (N=100): Post-market Registry Germany
 - Recruiting

Corvia Medical IASD[®] Clinical Studies

- Pilot study (N=11): non-randomized, single-arm
 - Completed (Søndergaard L, et al. Eur J Heart Fail 2014)
- REDUCE LAP-HF (CE Mark) Study (N=64): non-randomized, single-arm
 - Completed (Hasenfuß Lancet 2016; Kaye Circ. HF 2016)
- REDUCE LAP-HF I (N=44): RCT mechanistic study
 - FDA IDE 30 Day Complete (Feldman T... Shah SJ. Circulation. 2018;137:364–375)
 - 1Y follow-up complete
- REDUCE LAP-HF II (N=608): RCT pivotal study
 - FDA approved IDE; recruiting
- HFrEF Feasibility study
 - FDA approved IDE; recruiting
- REDUCE LAP-HF III (N=100): Post-market Registry Germany
 - Recruiting

InterAtrial Shunt Device for HFpEF

(REDUCE LAP-HF): multicentre, open-label, single-arm, phase 1 trial

Age, years	69 (8)	Echocardiography	
Sex Men Women NYHA functional class	22 42	Left ventricular end diastolic volume index, mL/m²68 (13)Left ventricular ejection fraction, %47 (7)Left ventricular mass index, g/m²119 (36)Left arterial diastolic volume index, mL/m²34 (17)	iab
 V	18 46 0	Right ventricle diastolic volume index, mL/m²22 (9)Right artery volume index, mL/m²35 (17)E/A ratio1·3 (0·8)E/A ratio1.3 (0·8)	
Body-mass index, kg/m ² eGFR, mL/min per 1·73m ² Haemoglobin, g/L	33 (6) 62 (21) 133 (5)	E/e' ratio 13.9 (5.9) TAPSE, mm 20 (4) NT-proBNP, pg/mL 377 (222–925)	
Comorbidities Diabetes Hypertension Atrial fibrillation Coronary artery disease	21 (33%) 52 (81%) 23 (36%) 23 (36%)	Resting haemodynamicsMean right arterial pressure, mm Hg9 (4)Mean pulmonary arterial pressure, mm Hg25 (7)Mean pulmonary capillary wedge pressure, mm Hg17 (5)Cardiac output, L/min5.5 (1.6)	

N=64 Hasenfuß G: Lancet 2016; 387: 1298–304

InterAtrial Shunt Device for HFpEF (REDUCE LAP-HF)

multicentre, open-label, single-arm, phase 1 trial

N=64 Hasenfuß G: Lancet 2016; 387: 1298–304

1-Year Outcomes After InterAtrial Shunt Device for HFpEF

REDUCE LAP-HF Kaye Circ Heart Fail. 2016 Dec;9(12). pii: e003662

1-Year Outcomes After InterAtrial Shunt Device for HFpEF Workload indexed peak exertion wedge pressure

REDUCE LAP-HF Kaye Circ Heart Fail. 2016 Dec;9(12). pii: e003662

Sustained Clinical Efficacy

At one year IASD therapy was associated with sustained improvements in NYHA class, quality of life score and six minute walk distance

REDUCE LAP-HF Kaye Circ Heart Fail. 2016 Dec;9(12). pii: e003662

REDUCE LAP HF 2 year Outcomes

Outcome measure	@6M	@12M	@24M
Survival	100%	95.3% (61/64)	92.2% (59/64)
All cause mortality	0%	4.7% (3/64)	7.8% (5/64)
HF related mortality	0%	0%	3.1% (2/64)

Total follow up: Median 739 days, 177.2 pt years f/u:

- 6 deaths: = 3.4 deaths/100 yrs (3 HF, 2 non HF, 1 CVA)
- 42 HFH events in 19 patients

Corvia Medical IASD[®] Clinical Studies

- Pilot study (N=11): non-randomized, single-arm
 - Completed (Søndergaard L, et al. Eur J Heart Fail 2014)
- REDUCE LAP-HF (CE Mark) Study (N=64): non-randomized, single-arm
 - Completed (Hasenfuß Lancet 2016; Kaye Circ. HF 2016)
- REDUCE LAP-HF I (N=44): RCT mechanistic study
 - FDA IDE 30 Day Complete (Feldman T... Shah SJ. Circulation. 2018;137:364–375)
 - 1Y follow-up (Shah SJ online August 27, 2018 at jama.com)
- REDUCE LAP-HF II (N=608): RCT pivotal study
 - FDA approved IDE; recruiting
- HFrEF Feasibility study
 - FDA approved IDE; recruiting
- REDUCE LAP-HF III (n=100): Post-market Registry Germany
 - Recruiting

Results: Baseline characteristics (3)

Baseline hemodynamics	IASD	Control	P-value
RA pressure (mmHg)	10.1 ± 2.3	9.1 ± 3.7	0.27
Mean PA pressure (mmHg)	30.2 ± 9.5	28.4 ± 8.6	0.52
Cardiac output (L/min/m ²)	5.4 ± 1.6	5.7 ± 2.7	0.66
Pulmonary vascular resistance (WU)	2.19 ± 1.52	1.74 ± 1.45	0.32
PCWP, legs down (mmHg)	20.9±7.9	19.9±7.5	0.67
PCWP, legs up (mmHg)	26.6±7.1	24.0 ± 9.3	0.32
PCWP, peak exercise (mmHg)	37.3 ± 6.5	37.3 ± 6.7	1.00
PCWP-RAP gradient at rest (mmHg)	10.8 ± 5.6	10.9 ± 7.3	0.95
Exercise duration (minutes)	7.4 ± 3.1	8.9 ± 4.0	0.18
Peak exercise workload (W)	42.3 ± 19.5	41.8 ± 16.2	0.93

REDUCE LAP HF I: Mechanistic RCT Change in PCWP: Baseline to 1M

1 Year Results

Shunt Patency

- At 1 year, shunt patency was documented in all participants who received the IASD and were still alive (n=20)
- There was no evidence through 1 year in the IASD arm vs. control of:
 - Greater increases in number of diuretic medications (p=0.83)
 - Total daily loop diuretic dose (p=0.20)

Left-to-Right Shunting Through a Patent IASD at 12 Months in a Study Participant

Baseline, 6-, and 12-Month Echocardiographic Parameters of Cardiac Structure and Function

- No significant change in left heart structure/function
- Trend towards greater reduction in LA volume index in IASD vs. control at 12 months (6.3±10.7 vs. 1.5±14.2 ml/m²; p=0.078).
- Increase in RVEDV (p=0.01) without any change in RVEF in the IASD arm.

Evanston Hospital

Key Secondary Outcome Measures at 12 Months*

Change in NYHA Functional Class: InterAtrial Shunt Device vs. Sham Control

Cumulative Incidence of MACCRE and Heart Failure Events Requiring Intravenous Diuretic Treatment Through 12 Months

NorthShore University HealthSystem Evanston Hospital

Consistent Safety Profile across 3 studies

	Pilot study (N=11)	REDUCE LAP-HF (N=64)	REDUCE LAP-HF I (N=22)	Combined (N=97)
1 Year Survival	100%	95.4%	95.2%	95.8%
2 Year Survival	91%	92%	TBD	
3 Year Survival	82%	89%	TBD	
1 Year Freedom from CVA	100%	98.5%	100%	99%
2 Year Freedom from CVA	100%	98.5%	TBD	
3 Year Freedom from CVA	100%	98.5%	TBD	
IASD thrombosis/removal/closure	0%	0%	0%	0%

Consistent & Durable Efficacy across 3 studies

	Pilot study (N=11)	REDUCE LAP-HF (N=64)	REDUCE LAP-HF I (N=22)	Combined (N=97)
1Y % NYHA I/II vs. baseline	55% vs. 0%	82% vs. 29%	63% vs. 0%	74% (vs.19%)
2Y % NYHA I/II vs. baseline	NA	69% vs. 29%	TBD	
1Y QOL improvement	-20 ¹	-15 ¹	+12 ²	
2Y QOL improvement	-26 ¹	-16 ¹	TBD	
1Y Freedom from IV HFH	82%	80% ³	81%	80%
1Y Freedom from IV HFH in patients with prior year HFH	67%	88%	75%	79%
1 Y Patency with L $ ightarrow$ R flow	100%4	100%4	100%	100%

¹MLWHF; ² KCCQ; ³ 2Y: 71%, 3Y: 69%; ⁴ Echo CL unable to assess in 1 patient

Corvia IASD Clinical Studies

- Pilot study (N=11): non-randomized, single-arm
 - Completed (Søndergaard L, et al. Eur J Heart Fail 2014)
- REDUCE LAP-HF (CE Mark) Study (N=64): non-randomized, single-arm
 - Completed (Hasenfuß Lancet 2016; Kaye Circ. HF 2016)
- REDUCE LAP-HF I (N=44): RCT mechanistic study
 - FDA IDE 30 Day Complete (Feldman T... Shah SJ. Circulation. 2018;137:364–375)
 - 1Y follow-up (*Shah SJ online August 27, 2018 at jama.com*)
- REDUCE LAP-HF II (N=608): RCT pivotal study
 - FDA approved IDE; recruiting
- HFrEF Feasibility study
 - FDA approved IDE; recruiting
- REDUCE LAP-HF III (N=100): Post-market Registry Germany
 - Recruiting

- Pilot study (N=11): non-randomized, single-arm Sondergaard L, et al. Eur J Heart Fail 2014
- REDUCE LAP-HF CE Mark Study (N=64): non-randomized, single-arm Hasenfuß Lancet 2016; Kaye Circ. HF 2016
 - Safety

Evanston nos

- Improved PCWP with exercise, patent shunts, Qp/Qs 1.25 at one year
- Improved NYHA, MLWHF, 6MWT at one year
- REDUCE LAP-HF I (N=44): RCT mechanistic study Feldman T... Shah SJ. Circulation. 2018;137:364–375, Shah SJ online August 27, 2018 at jama.com
 - Decreased PCWP with exercise established as mechanism
 - No change in left heart structure/function; increase in RVEDV without change in RVEF, decrease in LAVI
 - Clinical outcomes improved at 1 year, all shunts patent
- REDUCE LAP-HF II (N=608): RCT pivotal IDE study recruiting
- HFrEF Feasibility study FDA approved IDE; recruiting
- REDUCE LAP-HF III (N=100): Post-market Registry Germany Recruiting