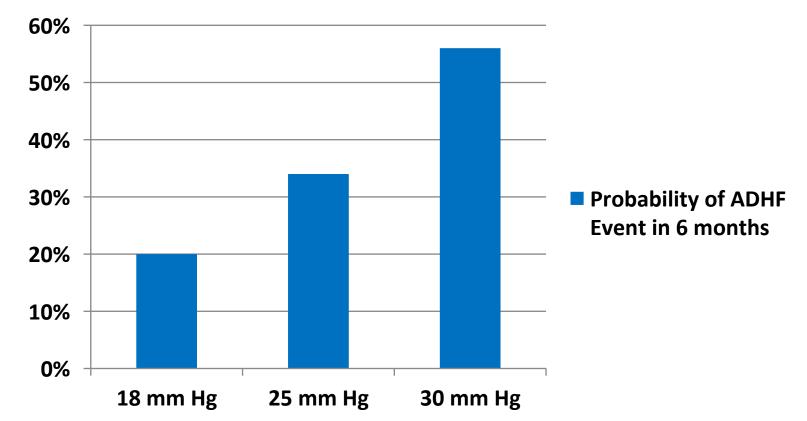

Left atrial decompression to treat heart failure

G. Hasenfuß Department of Cardiology and Pneumology Heart Center – University Medical Center Göttingen German Center for Cardiovascular Research

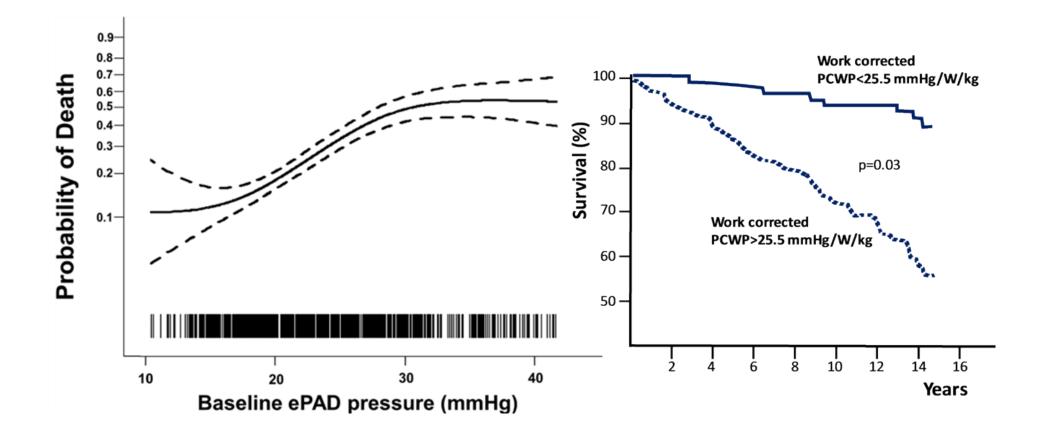
Presenter disclosure information Gerd Hasenfuss

Corvia	Consulting, lectures, Study PI
Servier	Consulting, honorarium for lectures
Impulse Dynamics	Consulting, honorarium for lectures, Co-PI
Novartis	Consulting, honorarium for lectures
AstraZeneca	Honorarium for lectures
Vifor Pharma	Consulting, honorarium for lectures
Berlin Chemie	Honorarium for lectures

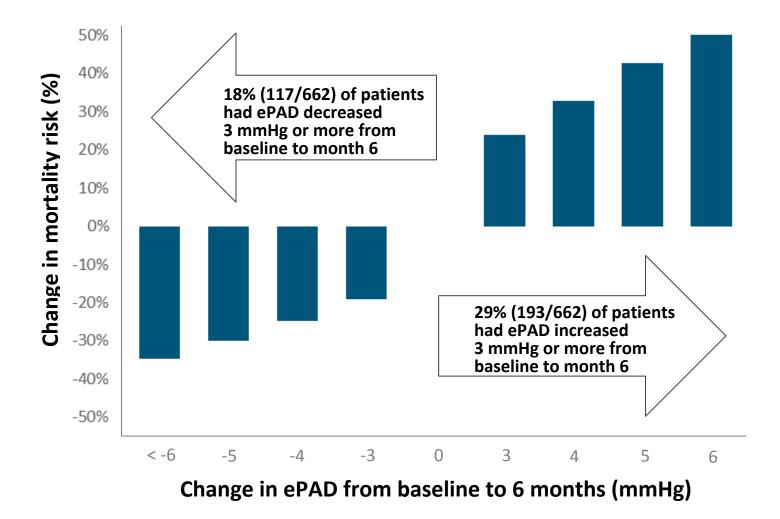

Mechanisms of exercise intolerance in HFpEF

PCWP rises quickly and profoundly and may be the key mechanism underlying effort intolerance

COMPASS-HF trial HFpEF subgroup analysis

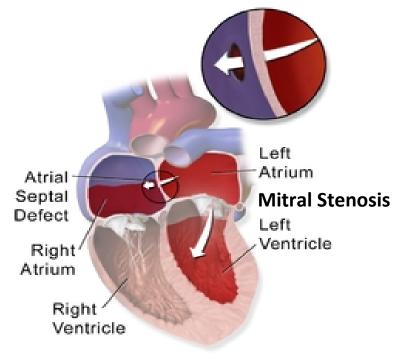

Chronic 24H e-PAD Pressure

Implantable PA device to monitor diastolic PAP (Surrogate for LAP) A 5 mm Hg (17 ± 7 to 22 ± 7) increase in estimated resting minimum PA diastolic P in HFpEF patients was associated with development of Acute Decompensated HF (ADHF)


Zile et al., Circ. Heart Fail 2017

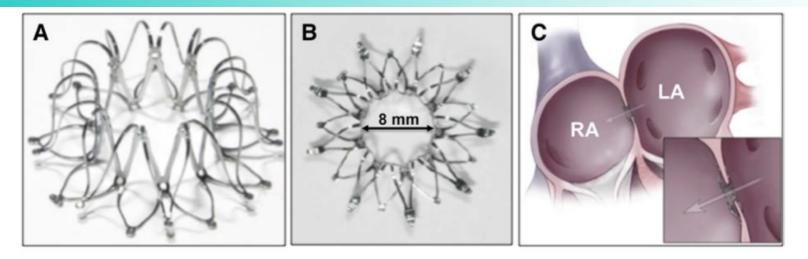
Baseline and exercise filling pressures & mortality

Over a range of ePAD* (≈15–35mm Hg), baseline pressure is directly related to probability of mortality.


Mortality & small filling pressure (ePAD*) changes

Zile et al., Circ. Heart Fail 2017

Lutembacher's Syndrome: Congenital ASD + Mitral Stenosis


In 1916, Lutembacher described the combination of mitral stenosis (which mimics the hemodynamic pathophysiology of HFpEF), and an ASD



Heart with Atrial Septal Defect

Patients with this syndrome had fewer symptoms and better outcomes

InterAtrial Shunt Device (IASD®)

Kaye et al., J Card Fail 2014

REDUCE LAP-HF TRIAL

- **REDUCE LAP-HF TRIAL:**
 - A study to evaluate the DC Devices, Inc. IASD[®] System II to <u>REDUCE</u> <u>E</u>levated <u>Left Atrial Pressure in Patients with Heart Failure</u>
 - Multicenter, open-label, single-arm, phase 1 trial
- Symptomatic HFpEF (64 patients)
- Preserved EF (> 40%)
- PCWP ≥ 15 mmHg at rest or ≥ 25 mmHg_during exercise
- CVP \leq 14 mmHg, TAPSE \geq 14 mm
- Monitored by independent DSMB, and CEC
- Independent Core-Laboratories
 - Echo
 - Hemodynamic
 - Sub-studies: Cardiac MRI, CPET
- Co-Primary endpoints: Safety and device performance at 6 months, three year clinical follow-up

Baseline demographics (n=64)

Age (Y)	69 ± 8.3
Male/Female (n)	22/42
LVEF (%)	47 ± 7
NYHA (n, II/III/IV)	18/46/0
BMI (kg/m ²)	33 ± 6
MLWHF score	49 ± 20
NT-Pro BNP (pg/ml) 271 SR; 1176 AF	377 (222-925)
Permanent AF (%)	36
CAD (%)	24
Hypertension (%)	81
Diabetes (%)	33
Musculoskeletal (%) / Rheumatologic (%)	35/20
COPD (%)	9

Data are mean ± SD, except *NT-BNP (median, IQR).

Resting echocardiographic / hemodynamic data

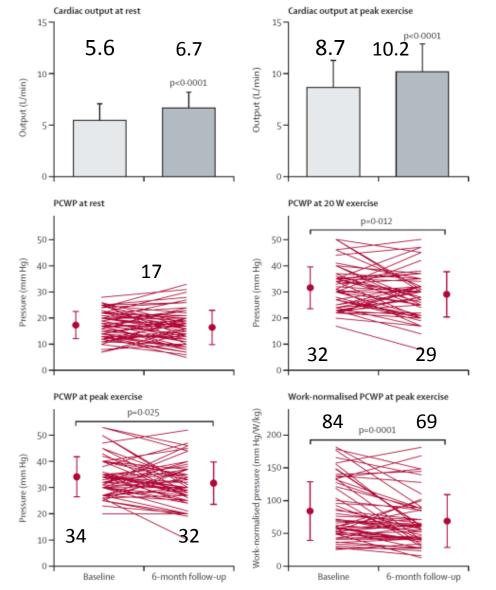
LV end diastolic volume index (ml/m ²)	68 ± 13
LV mass index (g/m ²)	119 ± 36
LA diastolic volume index (ml/m ²)	34 ± 17
RV diastolic volume index (ml/m ²)	22 ± 9
RA volume index (ml/m ²)	35 ± 17
E/A ratio	1.3 ± 0.8
E/e' ratio	13.9 ± 5.9
TAPSE (mm)	20 ± 4
Mean RA Pressure (mmHg)	9 ± 4
Mean PA Pressure (mmHg)	25 ± 7
Mean PCWP (mmHg)	17 ± 5
TD Cardiac output (I/min)	5.5 ± 1.6

Primary safety endpoint (n=64 Pts, 6 months)

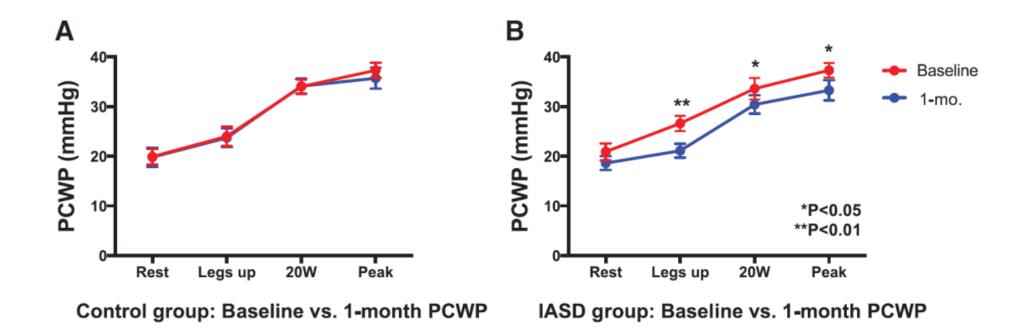
– MACCE event rate at 6 months:

– Death rate:	0%
- Stroke rate:	0%
– MI rate:	0%
– Systemic embolic event rate:	0%

- Implant removal rate: 0%
- No patient met the Primary safety endpoint

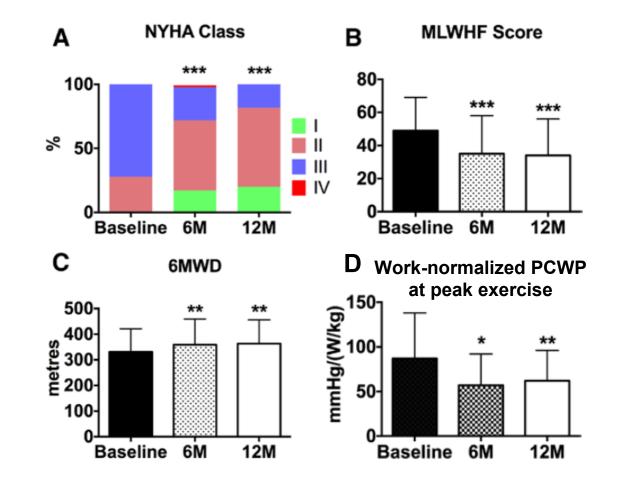

Primary device performance endpoints

 The % of subjects who have successful device implantation, defined as deployment at the intended location during the index procedure:


- Overall success rate: 96.7% (64/66)

- The % of subjects with reduction of PCWP; and demonstration of L I flow through the device <u>at 6 months</u>:
 - Echo L 🖪 flow: 100%
 - 1 not analyzable
 - Reduction of PCWP 71% (42/59)

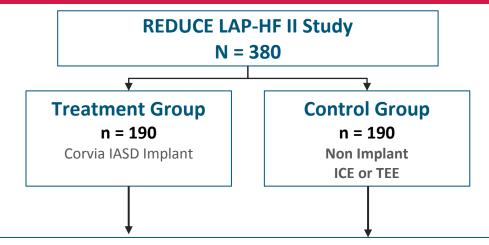
Cardiac output and PCWP at rest and exercise at baseline and 6-month follow-up



Sham controlled trial Pulmonary capillary wedge pressure during exercise hemodynamic testing

Feldman et al., Circulation 2018

Reduce LAP-HF 6 and 12 month clinical results



Right heart hemodynamics/function 6 months after IASD

Parameter	6M vs. baseline	P value
Op:Qs	1.27 vs. 1.06	0.0004
RA pressure (mmHg)	11±5 vs. 9±4	0.027
TAPSE	20 <u>+</u> 4 vs. 20 <u>+</u> 4	n.s.
PVR (Wood)	1.1 vs. 1.3	n.s.
RVDVI (ml/m ²)	27±11 vs. 22±9	0.0001
RAVI (ml/m²)	40±22 vs. 35±17	0.0145

Approved Pivotal trial

MULTICENTER, PROSPECTIVE, 1:1 RANDOMIZED, SHAM CONTROLLED, DOUBLE BLINDED TRIAL

ENDPOINTS

The Primary endpoint is a composite of:

- Cardiovascular mortality or non-fatal, ischemic stroke through 6 months; and
- Change in KCCQ score between baseline and 6 months.

The first powered secondary efficacy endpoint is

• The change in 6MWT distance between baseline and 6 months

The second powered secondary efficacy endpoint is a composite of:

- Cardiovascular mortality or non-fatal ischemic stroke through 12 months; and
- Rate of total (first plus recurrent) HF admissions, healthcare facility visits for IV diuresis for HF through 12 months; and
- Change in KCCQ score between baseline and 12 months.

The Primary and the Second powered secondary endpoint will be analyzed using the Finkelstein-Schoenfeld methodology

Reduction of LAP (PAP) by generating left to right shunt with IASD may be an effective therapeutic approach in HFpEF (HFmrEF)

Thank you!