Inter-Atrial Shunts for Pulmonary Hypertension: Group I and Group II

Daniel Burkhoff MD PhD
Cardiovascular Research Foundation
Disclosure Statement of Financial Interest

I, Daniel Burkhoff have the following financial interest, arrangement or affiliation that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation:

Hemodynamic Core Lab/Consultant to Corvia Medical
World Health Organization Classifications for Pulmonary Hypertension

<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>Primary pulmonary hypertension: idiopathic, familial, drug and toxin induced (appetite suppressant drugs), rare medical conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 2</td>
<td>Secondary to left ventricular disease: mitral valve disease, left ventricular systolic or diastolic failure.</td>
</tr>
<tr>
<td>GROUP 3</td>
<td>Secondary to pulmonary disease or hypoxia: COPD, sleep disordered breathing, obesity hypoventilation</td>
</tr>
<tr>
<td>GROUP 4</td>
<td>Secondary to chronic thromboembolism</td>
</tr>
<tr>
<td>GROUP 5</td>
<td>Unclear and multifactorial etiologies</td>
</tr>
</tbody>
</table>

Abbreviations: COPD: chronic obstructive pulmonary disease
RV and LV Mechanics in WHO I PAH

Small LV, Large RV

↑↑ PAP, ↑↑PVR

↑↑CVP, ↓PCWP, ↓CO
RV and LV Mechanics in PAH vs PH HFpEF/HFrEF

WHO II PH-HFpEF (or HFrEF)

Normal LV, Normal RV
↑PAP; nl or mild ↑PVR
NI CVP, ↑↑PCWP, ↓CO at peak Ex
Interatrial Shunts in WHO I and II PH
Treatment Goals

WHO I

- Right→Left shunt to increase LV filling and CO
- Reduce CVP

WHO II

- Left→Right shunt to reduce PCWP, especially during exercise
World Health Organization Classifications for Pulmonary Hypertension

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary pulmonary hypertension: idiopathic, familial, drug and toxin induced (appetite suppressant drugs), rare medical conditions</td>
</tr>
<tr>
<td>2</td>
<td>Secondary to left ventricular disease: mitral valve disease, left ventricular systolic or diastolic failure.</td>
</tr>
<tr>
<td>3</td>
<td>Secondary to pulmonary disease or hypoxia: COPD, sleep disordered breathing, obesity hypoventilation</td>
</tr>
<tr>
<td>4</td>
<td>Secondary to chronic thromboembolism</td>
</tr>
<tr>
<td>5</td>
<td>Unclear and multifactorial etiologies</td>
</tr>
</tbody>
</table>

Abbreviations: COPD: chronic obstructive pulmonary disease
ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension

PAH Treatment Algorithm

Anticoagulation ± Diuretics ± Oxygen ± Digoxin

Acute Vasoreactivity Testing*

Positive

Lower Risk‡

ERAs or PDE-5 Is (oral) Epoprostenol or Treprostinil (IV) Iloprost (inhaled) Treprostinil (SC)

Higher Risk§

Epoprostenol or Treprostinil (IV) Iloprost (inhaled) ERAs or PDE-5 Is (oral) Treprostinil (SC)

No

Continue CCB

Reassess: consider combo-therapy

Investigational protocols

Atrial septostomy Lung transplant†

Negative

Oral CCB†

Sustained response

Yes

Continue CCB

Circulation 2009
Treatment Algorithm for PAH: ESC/ERS (2016)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class - Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure/treatment</td>
<td>WHO-FC II</td>
</tr>
<tr>
<td>Hospitalization in intensive care unit is recommended in PH patients with high heart rate (>110 b/min), low blood pressure (Systolic blood pressure <90 mmHg), low urine output and rising lactate levels due or not due to comorbidities.</td>
<td>-</td>
</tr>
<tr>
<td>Inotropic support is recommended in hypotensive patients.</td>
<td>-</td>
</tr>
<tr>
<td>Lung transplantation is recommended soon after inadequate clinical response on maximal medical therapy.</td>
<td>-</td>
</tr>
<tr>
<td>Balloon atrial septostomy may be considered where available after failure of maximal medical therapy.</td>
<td>-</td>
</tr>
</tbody>
</table>
Acute Hemodynamic Effects After Septostomy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before</th>
<th>After</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRAP, mmHg</td>
<td>14.6 ± 8.0</td>
<td>11.6 ± 6.3</td>
<td>0.001</td>
</tr>
<tr>
<td>mLAP, mmHg</td>
<td>5.7 ± 3.3</td>
<td>8.1 ± 4.0</td>
<td>0.001</td>
</tr>
<tr>
<td>CI, L/min/m²</td>
<td>2.04 ± 0.69</td>
<td>2.62 ± 0.84</td>
<td>0.001</td>
</tr>
<tr>
<td>SaO₂ %</td>
<td>93.3 ± 4.1</td>
<td>83.0 ± 8.5</td>
<td>0.001</td>
</tr>
<tr>
<td>mPAP, mmHg</td>
<td>64.3 ± 17.6</td>
<td>65.7 ± 18.3</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Rich and Lam, AJC1983; 51: 1550-51
Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension

<table>
<thead>
<tr>
<th></th>
<th>1 year Survival</th>
<th>2 year survival</th>
<th>3 year survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial septostomy</td>
<td>92%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Historical Controls</td>
<td>73%</td>
<td>59%</td>
<td>52%</td>
</tr>
<tr>
<td>NIH Registry</td>
<td>61%</td>
<td>49%</td>
<td>38%</td>
</tr>
</tbody>
</table>
Comments (courtesy of Stuart Rich, Northwestern):

- Clinical response is unpredictable. Some patients have a dramatic improvement, others may not.
- Hypoxemia is generally well tolerated.
- Guidelines suggest do not do AS if RA pressure >20 mmHg or O2 sat on room air <90%.
- Staged procedures may be preferred: start with small hole and increase as tolerated if no clinical response.
- Currently underutilized as physicians think drugs work better which they usually do not.
World Health Organization Classifications for Pulmonary Hypertension

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1</td>
<td>Primary pulmonary hypertension: idiopathic, familial, drug and toxin induced (appetite suppressant drugs), rare medical conditions</td>
</tr>
<tr>
<td>GROUP 2</td>
<td>Secondary to left ventricular disease: mitral valve disease, left ventricular systolic or diastolic failure.</td>
</tr>
<tr>
<td>GROUP 3</td>
<td>Secondary to pulmonary disease or hypoxia: COPD, sleep disordered breathing, obesity hypoventilation</td>
</tr>
<tr>
<td>GROUP 4</td>
<td>Secondary to chronic thromboembolism</td>
</tr>
<tr>
<td>GROUP 5</td>
<td>Unclear and multifactorial etiologies</td>
</tr>
</tbody>
</table>

Abbreviations: COPD: chronic obstructive pulmonary disease
Interatrial Shunt for PAH-HFpEF?

REDUCE LAP-HF TRIAL II (Corvia)
- NYHA II/III/IVa
- LVEF ≥ 40%
- PCWP > CVP by ≥5 mmHg
- RAP < 14 mmHg
- PVR < 4 WU
- TAPSE > 14 mm

RELIEVE HF (V-Wave)
- NYHA III/IVa
- No EF restriction
- PAS <70 mmHg / PVR<4 WU
- TAPSE > 12 mm
AoP
PCWP
PAP
CVP
ASD Flow

Shunt

O$_2$ Sat

left \rightarrow right
Continuous L \rightarrow R Flow

45 Days after implant
REDUCE LAP-HF I RCT: Results

CONTROL

IASD

Feldman et al, Circulation 2018
ΔPCWP: Baseline vs 1 Month

<table>
<thead>
<tr>
<th>Outcome at 1 Mo</th>
<th>IASD Patients (N=22)</th>
<th>Control Patients (N=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCWP, peak, mmHg</td>
<td>-3.5±6.4 (n=17)</td>
<td>-0.5±5.0 (n=17)</td>
</tr>
<tr>
<td>PCWP, workload-corrected, mmHg/W/kg</td>
<td>-5.7±27.3 (n=16)</td>
<td>10.3±45.9 (n=17)</td>
</tr>
</tbody>
</table>

*P<0.05
**P<0.01

Feldman et al, Circulation 2018
Interatrial Shunts

WHO I
• R→L to increase LV filling and CO and decrease CVP
• Arterial desaturation limiting factor
• No randomized trials, but improved outcomes vs historical controls

WHO II
• Subgroup of WHO II patients included in trials
 • Upper limits to PVR, RVF and CVP for inclusion
• L→R to reduce PCWP
• Hemodynamic studies show ↓PCWP despite ↑Ex Tol
• Randomized studies underway
• Multiple device-based options under development and investigation