Transcatheter Interatrial Shunt for Treatment of Heart Failure

Daniel Burkhoff MD PhD
Cardiovascular Research Foundation
New York, NY
Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<table>
<thead>
<tr>
<th>Affiliation/Financial Relationship</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant/Research Support</td>
<td>Abiomed, Ancora, Axon, Edwards,</td>
</tr>
<tr>
<td></td>
<td>Abbott, AquaPass, Axon, BackBeat Medical, BioMind, Corvia, Impulse Dynamics, Therox, Zoll</td>
</tr>
<tr>
<td>Consulting Fees/Honoraria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ownership/Founder</td>
<td>PVLoops LLC</td>
</tr>
</tbody>
</table>
At least 7 Approaches to creating IASD

- Implantable devices:
 - Corvia Atrial Shunt System
 - V-Wave Ventura Shunt
 - Occlutech Atrial Flow Regulator (AFR)
 - Edwards Coronary Sinus Shunt
At least 7 Approaches to creating IASD

- 4 Implantable devices
- 3 that leave no device behind
MODE OF ACTION: Decompression of the left atrium by on-demand shunting from LA → RA (Qp:Qs 1.2-1.3)

Feldman T...Shah SJ. Circ Heart Fail 2016
Corvia Atrial Shunt Clinical Evidence Development

Patient Profile:
Symptomatic HF, EF >40%, hemodynamically confirmed elevated LAP

Pilot Study
Observational study, 2013
(n=11)

OBJECTIVE
Evaluate device safety & potential benefit at 30 days.

RESULTS
Evidence of significant PCWP drop and procedural safety at 30 days.
NYHA & QoL improvements at 1 year.

REDUCE LAP-HF
Observational study, 2015
(n=64)

OBJECTIVE
Understand device safety & therapy performance in larger patient cohort.

RESULTS
Evidence of sustained PCWP drop and device patency at 6m & 12m.
Sustained symptom, 6MWT, QoL improvement through 3 years.

REDUCE LAP-HF I
Randomized, blinded, sham-controlled trial, 2016
(n=44)

OBJECTIVE
Evaluate peri-procedural safety & device effectiveness against control arm.

RESULTS
Demonstrated mechanistic effect. Improvement in HF events, QoL, and symptoms vs. control at 1 year.
100% shunt patency at 1 year.

REDUCE LAP-HF II
Randomized, blinded, sham-controlled trial, 2020
(n=626)

OBJECTIVE
Evaluate safety & clinical efficacy against control arm in powered study.

RESULTS
Overall neutral; safety consistent with prior studies; large responder population with improvement of QoL and reduction of HF events.

1. Malek et al. *Int J Cardiol*, 2015;
5. Unpublished 3-year results on file at Corvia Medical;
7. Shah SJ et al. *JAMA Cardiol*, 2018;
REDUCE LAP-HF II study design1

PHASE III, MULTI-CENTER, DOUBLE-BLIND, SHAM-CONTROLLED TRIAL

PURPOSE: Evaluate the clinical efficacy and safety of the Corvia Atrial Shunt to improve quality of life and reduce HF related symptoms and events in patients with HFpEF or HFmrEF

Study Population
- N = 626 randomized
- Symptomatic HF, ongoing GDMT, age ≥40, LVEF ≥40%, preserved RV function, elevated exercise PCWP (≥25 mm Hg) with left-to-right gradient (≥ 5mmHg)

Atrial Shunt Treatment
- N=314

Sham Control
- NN=312

PRIMARY ENDPOINT
Hierarchical composite of cardiovascular mortality or non-fatal, ischemic stroke through 12m, rate of total HF events (first and recurrent) through 24m & time to first HF event, change in KCCQ score between baseline & 12m

SECONDARY ENDPOINTS
- Composite safety endpoint (MACCRE)
- Rate of HF admissions or IV diuresis, through 24m
- Change in NYHA Class between baseline & 12m
- Change in KCCQ score between baseline & 12m

1Berry, N et al. *Am Heart J*, vol. 226 (2020): 222-231
REDUCE LAP-HF II Primary Results

Primary Endpoint Win Ratio* (95% CI) p-Value

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Win Ratio* (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Endpoint</td>
<td>0.98 (0.8, 1.2)</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Efficacy Endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Treatment (N = 309)</th>
<th>Control (N = 312)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV death or non-fatal ischemic stroke</td>
<td>1% (4 events)</td>
<td>1% (2 events)</td>
<td>0.41</td>
</tr>
<tr>
<td>Cardiovascular Death</td>
<td>1% (4 events)</td>
<td>1% (2 events)</td>
<td>0.65</td>
</tr>
<tr>
<td>Non-fatal Ischemic Stroke</td>
<td><1% (1 event)</td>
<td>0% (0 events)</td>
<td>0.32</td>
</tr>
<tr>
<td>Total HF events per patient-year</td>
<td>0.28</td>
<td>0.25</td>
<td>0.45</td>
</tr>
<tr>
<td>Change in KCCQ-OSS (Mean ± SD)</td>
<td>11.5±22</td>
<td>10.5±21</td>
<td>0.73</td>
</tr>
<tr>
<td>Change in NYHA Class</td>
<td>-0.5 (-1.0, 0.0)</td>
<td>0.0 (-1.0, 0.0)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

*In win ratio calculation, all patients are compared with each other in pairwise manner on values of the components in a hierarchical manner (1 = neutral, >1 = treatment better, <1 = sham better)
High Exercise PVR + Pacemaker: Key Factors in Clinical Outcomes

SYSTEMATIC STATISTICAL ANALYSIS IDENTIFIED MOST SIGNIFICANT VARIABLES AFFECTING HF EVENT RATE

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>(P_{interaction})</th>
<th>HF event IRR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Exercise PVR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<1.74) WU(^1)</td>
<td>0.031</td>
<td>0.71 (0.42, 1.20)</td>
</tr>
<tr>
<td>(N=382)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\geq1.74) WU (N=191)</td>
<td></td>
<td>2.48 (1.23, 5.01)</td>
</tr>
<tr>
<td>Pacemaker(^2)</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>No PM (N=523)</td>
<td></td>
<td>1.05 (0.67, 1.65)</td>
</tr>
<tr>
<td>Yes PM (N=103)</td>
<td></td>
<td>3.12 (1.21, 8.05)</td>
</tr>
</tbody>
</table>

High exercise pulmonary vascular resistance (PVR) and presence of a pacemaker result in a 2-3 x increased risk of HF events

\(^1\)Upper tertile, which roughly corresponds to peak exercise in a healthy adult > 55 years (≤1.8WU); \(^2\)Includes CRT
The Responder Group shows significant improvement over sham control in Win ratio, HF event IRR, and KCCQ-OSS.
Patients with high exercise PVR and Pacemakers in this study had common comorbidities:

- worse RV strain
- lower TAPSE
- larger RA
 and/or
- more TR
Primary Endpoint Responder Group

Patients with normal exercise PVR and no pacemaker derive significant HF and QOL benefit

<table>
<thead>
<tr>
<th>Responder Group</th>
<th>Variable</th>
<th>Treatment (N=161)</th>
<th>Sham Control (N=152)</th>
<th>Win Ratio</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak PVR < 1.74 no pacemaker</td>
<td>Composite Endpoint (KCCQ Threshold=5)</td>
<td></td>
<td></td>
<td>1.5</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>CV death or non-fatal ischemic stroke</td>
<td>1.24% (2 events)</td>
<td>0% (0 events)</td>
<td>-</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Total HF events per patient-year</td>
<td>0.12</td>
<td>0.22</td>
<td>-</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Change in KCCQ-OSS (Mean ± SD)</td>
<td>15.5 ± 22.2 (153)</td>
<td>10.0 ± 20.6 (141)</td>
<td>-</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Significant reduction in total HF events for treated patients.

HF event curves for shunt therapy and sham control arms begin to separate around 3 months.

P-value = 0.0751

TREATMENT: At risk 161 160 160 160 117 103 95 85
CONTROL: At risk 152 152 150 150 101 86 83 75

1 Up to 24 months follow-up
REDUCE LAP-HF II is the largest interventional device therapy trial (n=626) in HFpEF, the largest unmet need in cardiology.

The study has significantly advanced the understanding of patient selection, and we have established criteria that identify a responder group, which represent >50% of the trial population.

Patients with normal exercise pulmonary vascular resistance (PVR <1.74) and without a pacemaker derived significant clinical benefit from the shunt:
- 45% reduction in the rate of HF events (0.12 vs. 0.22 events per patient-year, p = 0.007)
- 55% greater improvement in health status over sham (+5.5 points, p = 0.01) as assessed by KCCQ overall summary score, including 40% more patients with a very large (>20 points) quality of life improvement

There is biological plausibility for the criteria defining the subgroup and is further supported by congruence in clinical outcomes, including a reduction in the HF event rate and an improvement in health status (both KCCQ and NYHA class).

Exercise hemodynamic phenotyping played a critical role in defining the responder group.