TECHNOLOGY AND HEART THERAPEUTICS (THT) SCIENTIFIC SESSIONS 2024

Patient Selection Considerations for Trials of Interatrial Shunts

Sanjiv J. Shah, MD

Stone Professor of Medicine Director of Research, Bluhm Cardiovascular Institute Division of Cardiology, Department of Medicine Director, Center for Deep Phenotyping and Precision Therapeutics, Institute for Augmented Intelligence in Medicine Northwestern University Feinberg School of Medicine sanjiv.shah@northwestern.edu • http://www.hfpef.org • Twitter: @HFpEF

NORTHWESTERN UNIVERSITY FEINBERG SCHOOL OF MEDICINE

Disclosures

Research funding:

- ···> NIH U54 HL160273, R01 HL107577, R01 HL127028, R01 HL140731
- ---> AHA #16SFRN28780016, #15CVGPSD27260148
- ---> AstraZeneca, Corvia, Pfizer

Consulting / advisory board / steering committee:

---> Abbott, Alleviant, AstraZeneca, Amgen, Aria CV, Axon Therapies, BaroPace, Bayer, Boehringer-Ingelheim, Boston Scientific, Bristol-Myers Squibb, CentrusDx, Cytokinetics, Edwards Lifesciences, Eidos, Eon, Gordian, Imara, Impulse Dynamics, Intellia, Ionis, Lilly, Merck, Metabolic Flux, Novartis, Novo Nordisk, Pfizer, Prothena, Regeneron, Rivus, Sardocor, Secretome, Shifamed, Tenax, Tenaya, and Ultromics

ASD in the setting of mitral stenosis

Congenital ASD in the setting of mitral stenosis
 Decompression of ^LA pressure
 Large reservoir: right atrium, great veins, hepatic veins

DE LA STÉNOSE MITRALE AVEC COMMUNICATION INTERAURICULAIRE (1)

Les observations de sténose mitrale avec communication interauriculaire ne sont pas absolument rares, mais les faits rapportés sont loin d'être équivalents, tant au point de vue anatomique qu'au point de vue pathogénique. C'est pourquoi, de l'observation qui fait l'objet de cette étude, nous rapprocherons les faits déjà publiés. Leur lecture fera mieux comprendre la nécessité de les ranger en des groupes différents. Après avoir ainsi établi la délimitation des faits que nous étudions ici d'avec les faits connexes, nous préciserons certains de leurs caractères cliniques et anatomiques, en cherchant de plus à dégager de l'étude de ce cas particulier certaines notions de pathogénie.

ASD in the setting of mitral stenosis

 Congenital ASD in the setting of mitral stenosis ---> Decompression of **↑LA** pressure ---> Large reservoir: right atrium, great veins, hepatic veins \rightarrow But if too much L \rightarrow R shunting \rightarrow risk of RV failure, worse outcomes

Lutembacher R. Arch Mal Coeur Vaiss 1916

Effects of IASD on the heart

Findings from REDUCE LAP-HF II longitudinal echo analysis (1, 6, 12, 24 mo.)

Summary of changes over time (compared to sham)	Interpretation
LV and LA get smaller	Shunt is unloading left heart
LV longitudinal systolic function gets better	Shunt is unloading left heart
LA emptying fraction gets better	Shunt is unloading LA
LA pressure goes down	Shunt is unloading LA
Degree of MR goes down (-0.2 grades)	Shunt is unloading LA
RA and RV get larger	Shunt is working (LA \rightarrow RA)
Degree of TR goes up (+0.2 grades)	Effect of RA/RV dilation
No difference in PASP and RA pressure between groups	Shunt \neq hemodynamic stress
No difference in RV systolic function between groups	RV function is preserved

Patel RB...Shah SJ. JAMA Cardiology 2024 (in press)

Effects of IASD on the heart

LV and LA get smaller: Avoid HCM, avoid low output states **RV and RA get bigger: Avoid vulnerable** RV, overt RV failure, RA failure **Tricuspid annulus will dilate: Avoid** moderate or greater TR **Blood needs to get back to left heart:** Avoid pulmonary vascular disease, tricuspid/pulmonary valve obstruction

Hemodynamic HFpEF phenotypes

Hemodynamic HFpEF phenotypes

HFpEF ----> ruled out

Type 1 HFpEF: ---> Exercise-induced LA hypertension (EILAH)

Type 2 HFpEF: ---> Resting LA hypertension ± volume overload (RELAH)

Type 3 HFpEF:

Pulmonary vascular disease ---> **Right heart failure** (e.g., latent PVD, CpcPH)

Not an interatrial shunt candidate

Evaluate further for interatrial shunt

Diurese and reevaluate

Not an interatrial shunt candidate

Left atrial enlargement (LA size > RA size)

Left atrial enlargement (LA size > RA size) Interatrial septum bows from left to right

 Left atrial enlargement (LA size > RA size)
 Interatrial septum bows from left to right
 No evidence of septal flattening or septal bounce

If ↑↑ PASP, make sure E/A ratio >1

Left atrial enlargement (LA size > RA size)
Interatrial septum bows from left to right
No evidence of septal flattening or septal bounce

RVOT notching on PW Doppler is associated with high PVR: unlikely to benefit from interatrial shunting!

PAH vs. PVH spectrum

PULMONARY	
ARTERIAL	
HYPERTENSION	

	m	PAP = PA	60 mm DP-PC	Hg, P WP =	CWP = 28 mm	= 10 iHg,	mmHg PVR =	, CC 12.5) = 4 L/m ; WU	in
	100	1		\wedge		\wedge		\wedge		
n Hg)	80			$ \rangle$					PA	n Hg)
e (mr	60		M		N		M		M	e (mr
ssur	40]]	\mathbb{N}					ssur
Pre	20								PCWP	Pre
	0									
	Pre-capillary PH							Co		

Parameter	PAH	PVH
RV size	Enlarged	May be enlarged
LA size	Small	Large
RA/LA size ratio	Increased	Normal (LA > RA size)
Interatrial septum	Bows from right to left	Bows from left to right
RVOT notching	Common	Rare
E/A ratio	<< 1	> 1
Lateral e'	Normal	Decreased
Lateral E/e'	< 8	> 10
Aortic pressure	Normal/Low	Normal/High
PCWP	≤ 15 mmHg	> 15 mmHg
PADP-PCWP	> 7 mmHg	< 5 mmHg

nPAP = 60 mmHg, PCWP = 24 mmHg, CO = 4 L/min

PADP-PCWP = 12 mmHq, PVR = 9 WU

McLaughlin VV, Shah SJ, et al. JACC 2015

PULMONARY VENOUS HYPERTENSION

REDUCE LAP-HFII: Responder analysis

24-month recurrent HF events analysis

Gustafsson F...Shah SJ. ESC-HFA 2023

REDUCE LAP-HFII: Responder analysis

3-Year Results in the Responder Group: Shunt vs. Sham

Heart Failure Event Rate

Latent PVD: Novel HFpEF phenotype

Potential Rx:

- Atrial shunt devices
- Greater splanchnic? nerve ablation?
- Nitrites?

Pathophysiology:

 Excessive ↑LA pressure during exercise → dynamic ↑pulmonary venous pressures but able to augment SV, CO → dyspnea

Lower risk HFpEF phenotype

Normal pulmonary vasculature

Phenotypic spectrum of pulmonary vascular disease

Potential Rx:

- Levosimendan?
- Sotatercept?
- Pulmonary vasodilators?

Pathophysiology:

Excessive ↑RA
 pressure + inability
 to augment SV
 during exercise →
 ↓exercise CO,
 ↑dead space →
 dyspnea

Higher risk HFpEF phenotype

Abnormal pulmonary vasculature

Oakland HT, Shah SJ. JACC Heart Fail 2023

72-year-old woman with HFpEF

Source: Sanjiv Shah, MD HFpEF Lab, Northwestern Univ.

72-year-old woman with HFpEF

Source: Sanjiv Shah, MD HFpEF Lab, Northwestern Univ.

3 years later: 75-year-old woman with HFpEF

Severely reduced a' velocities: LA myopathy

3 years later: 75-year-old woman with HFpEF

75-year-old woman with HFpEF, LA myopathy PARTICIPATED IN REDUCE LAP-HF I RCT: RANDOMIZED TO SHUNT DEVICE

Resting PCWP (mmHg)

Peak exercise PCWP (mmHg)

Shah SJ. THT Scientific Sessions 2023

75-year-old woman with HFpEF, LA myopathy PARTICIPATED IN REDUCE LAP-HF I RCT: RANDOMIZED TO SHUNT DEVICE

Subcostal view

12-month echo

Subcostal view (zoomed)

Shah SJ. THT Scientific Sessions 2023

75-year-old woman with HFpEF, LA myopathy PARTICIPATED IN REDUCE LAP-HF I RCT: RANDOMIZED TO SHUNT DEVICE

3 years after atrial shunt device placement

Shah SJ. THT Scientific Sessions 2023

Take home points

- Interatrial shunts: Promising treatment for selected patients with HF... first do no harm!
- Patient selection is key: Avoid low output states, obstructive HCM, RA/RV failure, significant TR, prior tricuspid valve intervention, and significant pulmonary vascular disease Look for clues on the echocardiogram: Interatrial septum bows $L \rightarrow R$, LA bigger than RA, normal RA/RV, small IVC, no RVOT notching, less than moderate TR Exercise RHC: Critical test to determine benefit/harm of shunt